Objectives:

- Find the integral of the absolute value of a given function.
- Interpret the integral of a function's absolute value.

Graphically:

The graph of $f(x)$ is given with areas labeled (e.g. $\int_{b}^{c} f(x) d x=7$).
$\int_{a}^{e} f(x) d x=$

Graph $|f(x)|$:

Write $\int_{a}^{e}|f(x)| d x$ in terms of integrals of $f(x)$:

So to find $\int_{a}^{b}|f(x)| d x$,

1. Find all points where $f(x)=$ \qquad
2. Use these points to separate $[a, b]$ into subintervals where $f(x)$ \qquad .
3. To calculate $\int_{a}^{b}|f(x)| d x$, add the absolute value of the integral of each subinterval. (Add the integral if $f(x) \geq 0$ on that subinterval and subtract the integral if $f(x) \leq 0$.)

Example: $\int_{-\pi}^{\pi}|\cos (x)| d x$

Interpreting the Integral of Absolute Value

If $v(t)$ represents an object's velocity as a function of time, we know the integral of $v(t)$ represents

The integral of speed, $|v(t)|$, represents \qquad .
Example: The velocity of a boat in miles per hour at x hours after noon is given by $v(x)=x^{2}-4 x+3$.
(a) What is the total distance traveled by the boat between noon and 4 pm ?

Hint: $x^{2}-4 x+3=(x-3)(x-1)$
(b) What is the distance between the boat's starting position at noon and the boat's ending position at 4 pm ?

