Objectives:

- Find the integral of the absolute value of a given function.
- Interpret the integral of a function's absolute value.

Graphically:

The graph of f(x) is given with areas labeled (e.g. $\int_b^c f(x) dx = 7$).

$$\int_{a}^{e} f(x)dx =$$

Graph |f(x)|:

Write $\int_a^e |f(x)| dx$ in terms of integrals of f(x):

So to find $\int_a^b |f(x)| dx$,

- 1. Find all points where f(x) = _____
- 2. Use these points to separate [a, b] into subintervals where f(x)
- 3. To calculate $\int_a^b |f(x)| dx$, add the absolute value of the integral of each subinterval. (Add the integral if $f(x) \ge 0$ on that subinterval and subtract the integral if $f(x) \le 0$.)

Example: $\int_{-\pi}^{\pi} |\cos(x)| dx$

Interpreting the Integral of Absolute Value

If v(t) represents an object's velocity as a function of time, we know the integral of v(t) represents

The integral of speed, |v(t)|, represents ______.

Example: The velocity of a boat in miles per hour at x hours after noon is given by $v(x) = x^2 - 4x + 3$.

(a) What is the total distance traveled by the boat between noon and 4pm? Hint: $x^2 - 4x + 3 = (x - 3)(x - 1)$

(b) What is the distance between the boat's starting position at noon and the boat's ending position at 4pm?